Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731823

RESUMO

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Assuntos
Portadores de Fármacos , Lamotrigina , Polímeros Molecularmente Impressos , Lamotrigina/química , Portadores de Fármacos/química , Polímeros Molecularmente Impressos/química , Polímeros Molecularmente Impressos/síntese química , Impressão Molecular/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Liberação Controlada de Fármacos , Difração de Raios X , Adsorção , Concentração de Íons de Hidrogênio
2.
Sci Rep ; 13(1): 1592, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709210

RESUMO

Half-Heusler (HH) phase TmNiSb was obtained by arc-melting combined with high-pressure high-temperature sintering in conditions: p = 5.5 GPa, [Formula: see text] = 20, 250, 500, 750, and 1000 [Formula: see text]C. Within pressing temperatures 20-750 [Formula: see text]C the samples maintained HH structure, however, we observed intrinsic phase separation. The material divided into three phases: stoichiometric TmNiSb, nickel-deficient phase TmNi[Formula: see text]Sb, and thulium-rich phase Tm(NiSb)[Formula: see text]. For TmNiSb sample sintered at 1000 [Formula: see text]C, we report structural transition to LiGaGe-type structure (P[Formula: see text]mc, a = 4.367(3) Å, c = 7.138(7) Å). Interpretation of the transition is supported by X-ray powder diffraction, electron back-scattered diffraction, ab-initio calculations of Gibbs energy and phonon dispersion relations. Electrical resistivity measured for HH samples with phase separation shown non-degenerate behavior. Obtained energy gaps for HH samples were narrow ([Formula: see text] 260 meV), while the average hole effective masses in range 0.8-2.5[Formula: see text]. TmNiSb sample pressed at 750 [Formula: see text]C achieved the biggest power factor among the series, 13 [Formula: see text]WK[Formula: see text]cm[Formula: see text], which proves that the intrinsic phase separation is not detrimental for the electronic transport.

3.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233904

RESUMO

Two types of magnetite nanoparticles: unmodified (Fe3O4 NPs), and modified with poly(sodium acrylate) (Fe3O4/PSA NPs) were synthesized by the co-precipitation method and characterized using different techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Brunauer-Emmett-Teller (BET) adsorption, Fourier-transform infrared spectroscopy (FTIR). Additionally, magnetic properties and the effect of pH on the zeta potential were analyzed for both types of nanoparticles. Magnetites were used as adsorbents for seven heavy metal ions (Zn(II), Cu(II), Ni(II), Cd(II), Pb(II), Cr(III), Cr(VI)) within the pH range of 3-7. Research revealed nanometric particle sizes, a specific surface area of 140-145 m2/g, and superparamagnetic properties of both tested materials. Moreover, the presence of PSA functional groups in modified magnetite was confirmed, which lowered the pH of the isoelectric point. Both types of magnetite were effective metal ion adsorbents, with metal cations more effectively removed on Fe3O4/PSA NPs and Cr(VI) anions on Fe3O4 NPs. The adsorption of most of the examined cations (performed at pH = 5) can be well described by the Langmuir isotherm model, whereas the adsorption of Cr(VI) ions on modified magnetite correlated better with the Freundlich model. The Dubinin-Radushkevich model confirmed that chemisorption is the predominant process. The adsorption of all metal ions was well-characterized by the pseudo-second-order kinetic model.

4.
Int J Nanomedicine ; 15: 7923-7936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116509

RESUMO

INTRODUCTION: We present a multimodal nanoplatforms for the treatment of hepatocellular carcinoma (HCC) in vitro. The nanoplatforms are based on polydopamine (PDA)-coated magnetite nanoparticles (NPs) and spheres (sMAG) with PAMAM dendrimers and functionalized with NHS-PEG-Mal (N-hydroxysuccinimide-polyethylene glycol-maleimide) linker, which allows their functionalization with a folic acid derivative. The nanomaterials bearing a folic acid-targeting moiety show high efficiency in killing cancer cells in the dual chemo- and photothermal therapy (CT-PTT) of the liver cancer cells in comparison to modalities performed separately. MATERIALS AND METHODS: All materials are characterized in detail with transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and magnetic measurements. Also, photothermal properties were determined under irradiation of nanoparticles with laser beam of 2 W/cm2. The nontoxicity of nanoparticles with doxorubicin and without was checked by WST and LIVE/DEAD assay. Those tests were also used to evaluate materials bearing folic acid and anticancer drug in combined chemo- and photothermal therapy of HCC. Further, the generation of reactive oxygen species profile was also evaluated using flow cytometry test. RESULTS: Both NPs and sMAG showed high photothermal properties. Nevertheless, the higher photothermal response was found for magnetic spheres. Materials of concentration above 10 µg/mL reveal that their activity was comparable to free doxorubicin. It is worth highlighting that a functionalized magnetic sphere with DOXO more strongly affected the HepG2 cells than smaller functionalized nanoparticles with DOXO in the performed chemotherapy. This can be attributed to the larger size of particles and a different method of drug distribution. In the further stage, both materials were assessed in combined chemo- and photothermal therapy (CT-PTT) which revealed that magnetic spheres were also more effective in this modality than smaller nanoparticles. CONCLUSION: Here, we present two types of nanomaterials (nanoparticles and spheres) based on polydopamine and PAMAM dendrimers g.5.0 functionalized with NHS-PEG-Mal linker terminated with folic acid for in vitro hepatocellular carcinoma treatment. The obtained materials can serve as efficient agents for dual chemo- and photothermal therapy of HCC. We also proved that PDA-coated magnetic spheres were more efficient in therapies based on near-infrared irradiation because determined cell viabilities for those materials are lower than for the same concentrations of nanomaterials based on small magnetic nanoparticles.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/terapia , Portadores de Fármacos/química , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/química , Fototerapia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Terapia Combinada , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Indóis/química , Neoplasias Hepáticas/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/química
5.
Materials (Basel) ; 13(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105776

RESUMO

The TiO2-Fe3O4 composite materials were fabricated via the hydrothermal-assisted technique. It was determined how the molar ratio of TiO2 to Fe3O4 influences the crystalline structure and morphology of the synthesized composite materials. The effect of the molar ratio of components on the antibacterial activity was also analyzed. On the basis of XRD patterns for the obtained titanium(IV) oxide-iron(II, III) oxide composites, the two separate crystalline forms-anatase and magnetite -were observed. Transmission electron microscopy revealed particles of cubic and tetragonal shape for TiO2 and spherical for Fe3O4. The results of low-temperature nitrogen sorption analysis indicated that an increase in the iron(II, III) oxide content leads to a decrease in the BET surface area. Moreover, the superparamagnetic properties of titanium(IV) oxide-iron(II, III) oxide composites should be noted. An important aim of the work was to determine the antibacterial activity of selected TiO2-Fe3O4 materials. For this purpose, two representative strains of bacteria, the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, were used. The titanium(IV) oxide-iron(II, III) oxide composites demonstrated a large zone of growth inhibition for both Gram-positive and Gram-negative bacteria. Moreover, it was found that the analyzed materials can be reused as antibacterial agents in three consecutive cycles with good results.

6.
J Phys Chem B ; 124(42): 9456-9463, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32990436

RESUMO

Polydopamine (PDA) has a wide range of applications in biomedicine due to its high biocompatibility and surface chemistry and because of the presence of many functional groups in it, enabling further modification. As a catechol-like material, it has chelation properties for various types of metal ions, including iron. Here, we developed a procedure that uses PDA as a template to grow iron structures ß-FeOOH directly on its surface. The innovative approach of this work relies on that these structures can be obtained in neutral conditions and selective iron-ion source. The influence of iron-ion source, environment, and solution concentration on the structure and amount of resulting material is presented. The growth has been characterized over time, taking into account their photothermal, magnetic, and colloidal stability properties. Moreover, we shed new light on understanding the interaction of PDA with iron ions for the growth of iron-based nanostructure on polydopamine particles. Finally, we predict that PDA@ß-FeOOH nanoparticles could be a promising material in dual therapy merging photothermal therapy (PTT) treatment and magnetic resonance imaging (MRI) contrast agents.

7.
Materials (Basel) ; 12(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137868

RESUMO

Thermoelectric properties of the half-Heusler phase ScNiSb (space group F 4 ¯ 3m) were studied on a polycrystalline single-phase sample obtained by arc-melting and spark-plasma-sintering techniques. Measurements of the thermopower, electrical resistivity, and thermal conductivity were performed in the wide temperature range 2-950 K. The material appeared as a p-type conductor, with a fairly large, positive Seebeck coefficient of about 240 µV K-1 near 450 K. Nevertheless, the measured electrical resistivity values were relatively high (83 µΩm at 350 K), resulting in a rather small magnitude of the power factor (less than 1 × 10-3 W m-1 K-2) in the temperature range examined. Furthermore, the thermal conductivity was high, with a local minimum of about 6 W m-1 K-1 occurring near 600 K. As a result, the dimensionless thermoelectric figure of merit showed a maximum of 0.1 at 810 K. This work suggests that ScNiSb could be a promising base compound for obtaining thermoelectric materials for energy conversion at high temperatures.

8.
Bioorg Chem ; 93: 102747, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30739714

RESUMO

Enzymatic cofactor-dependent conversion of monosaccharides can be used in the bioproduction of value-added compounds. In this study, we demonstrate co-immobilization of xylose dehydrogenase (XDH, EC 1.1.1.175) and alcohol dehydrogenase (ADH, EC 1.1.1.1) using magnetite-silica core-shell particles for simultaneous conversion of xylose into xylonic acid (XA) and in situ cofactor regeneration. The reaction conditions were optimized by factorial design, and were found to be: XDH:ADH ratio 2:1, temperature 25 °C, pH 7, and process duration 60 min. Under these conditions enzymatic production of xylonic acid exceeded 4.1 mM and was more than 25% higher than in the case of a free enzymes system. Moreover, the pH and temperature tolerance as well as the thermo- and storage stability of the co-immobilized enzymes were significantly enhanced. Co-immobilized XDH and ADH make it possible to obtain higher xylonic acid concentration over broad ranges of pH (6-8) and temperature (15-35 °C) as compared to free enzymes, and retained over 60% of their initial activity after 20 days of storage. In addition, the half-life of the co-immobilized system was 4.5 times longer, and the inactivation constant (kD = 0.0141 1/min) four times smaller, than those of the free biocatalysts (kD = 0.0046 1/min). Furthermore, after five reaction cycles, immobilized XDH and ADH retained over 65% of their initial properties, with a final biocatalytic productivity of 1.65 mM of xylonic acid per 1 U of co-immobilized XDH. The results demonstrate the advantages of the use of co-immobilized enzymes over a free enzyme system in terms of enhanced activity and stability.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Coenzimas/metabolismo , Xilose/análogos & derivados , Xilose/metabolismo , Álcool Desidrogenase/genética , Oxirredutases do Álcool/química , Coenzimas/química , Enzimas Imobilizadas , Concentração de Íons de Hidrogênio , Temperatura , Xilose/química
9.
Colloids Surf B Biointerfaces ; 169: 118-125, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758537

RESUMO

In the presented study synthesized magnetic nanoparticles were used as an inorganic precursor for the preparation of novel magnetite-lignin and magnetite-chitin hybrid supports for enzyme immobilization. Effective synthesis of the hybrids was confirmed by Fourier transform infrared spectroscopy and powder X-ray diffraction analysis. The materials exhibited good thermal stability and surface areas of 4.3 and 5.6 m2/g respectively. The magnetite-lignin + trypsin and magnetite-chitin + trypsin systems were found to have good storage stability and reusability. After 20 days they retained over 75% and 90% respectively of their initial activity, and after 10 consecutive biocatalytic cycles retained over 60% and 80% respectively of their initial activity. The kinetic parameters of the free and immobilized enzyme were also comprehensively examined and compared. The results of peptide digestion tests confirmed the high proteolytic activity of the produced trypsin-based magnetic biocatalytic systems.


Assuntos
Biopolímeros/química , Nanopartículas de Magnetita/química , Tripsina/química , Biocatálise , Biopolímeros/metabolismo , Quitina/química , Quitina/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lignina/química , Lignina/metabolismo , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...